Engineering crop plants: getting a handle on phosphate.

نویسندگان

  • Henrik Brinch-Pedersen
  • Lisbeth Dahl Sørensen
  • Preben Bach Holm
چکیده

In plant seeds, most of the phosphate is in the form of phytic acid. Phytic acid is largely indigestible by monogastric animals and is the single most important factor hindering the uptake of a range of minerals. Engineering crop plants to produce a heterologous phytase improves phosphate bioavailability and reduces phytic acid excretion. This reduces the phosphate load on agricultural ecosystems and thereby alleviates eutrophication of the aquatic environment. Improved phosphate availability also reduces the need to add inorganic phosphate, a non-renewable resource. Iron and zinc uptake might be improved, which is significant for human nutrition in developing countries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional biology of plant phosphate uptake at root and mycorrhiza interfaces.

Phosphorus (P) is an essential plant nutrient and one of the most limiting in natural habitats as well as in agricultural production world-wide. The control of P acquisition efficiency and its subsequent uptake and translocation in vascular plants is complex. The physiological role of key cellular structures in plant P uptake and underlying molecular mechanisms are discussed in this review, wit...

متن کامل

A phosphate starvation‐driven bidirectional promoter as a potential tool for crop improvement and in vitro plant biotechnology

Phosphate (Pi)-deficient soils are a major limitant factor for crop production in many regions of the world. Despite that plants have innovated several developmental and biochemical strategies to deal with this stress, there are still massive extensions of land which combine several abiotic stresses, including phosphate starvation, that limit their use for plant growth and food production. In s...

متن کامل

Comprehensive Assessment of Transcriptional Regulation Facilitates Metabolic Engineering of Isoprenoid Accumulation in Arabidopsis.

In plants, two spatially separated pathways provide the precursors for isoprenoid biosynthesis. We generated transgenic Arabidopsis (Arabidopsis thaliana) lines with modulated levels of expression of each individual gene involved in the cytosolic/peroxisomal mevalonate and plastidial methylerythritol phosphate pathways. By assessing the correlation of transgene expression levels with isoprenoid...

متن کامل

Quantitative Detection of Inositol Hexakisphosphate (InsP6) in Crop Plants Using Polyacrylamide Gel Electrophoresis (PAGE)

Inositol phosphates are essential for cell development and signaling in all living organisms. Inositol hexakisphosphate (InsP6) is the most abundant phosphoinositol in both plants and animals. While the concentration of inorganic phosphorous (Pi) is often limited in soil, some plants overcome this limitation by creating a phosphate reservoir that serves as a source of Pi during phosphate defici...

متن کامل

Bioinformatics Comparison of Codon Usage of Genes Encoding Phosphate Transporter in Terms of Salt Tolerance, Day Length, Temperature and Pollination in Different Plants

In order to study and compare the phosphate transporter gene codon usage and it's respond to the traits like salt tolerance, day length, Pollination and temperature in different plants, 100 isoform from 10 plants are extracted from NCBI website and then analyzed with Gene Infinity and Minitab 16 software. The result shows that the highest codon usage similarity (81.95%) was for wheat a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trends in plant science

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2002